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Abstract. his paper introduces a new data visualization technique for the evaluation of
3D unsteady data using the various terms of the deterministic unsteady vorticity transport
equation. The toroidal vortex residing in the inlet cavity of an axial turbine rotor labyrinth
is discussed using the proposed technique. Especially, secondary flow effects and the effect
of unsteadiness with respect to its contribution to loss generation were investigated. The
analysis has allowed further insight in flow physics. It turned out that the rotational accel-
eration of the vortex shows a phase shift of one quarter of blade passing period relative to
the vortex strength.

Mathematical Subject Classification: 73A05
Keywords : toroidal vortex, visualization technique, vorticity transport equation

Nomenclature
C [−] circumferential position, θ/pblade
fbp [Hz] blade passing frequency
h [J/kg] specific enthalpy
�i [−] unit vector
p [Pa] static pressure
pblade [deg] blade pitch, 360◦/42
r [m] radial position
R [−] radial height, (r − rHub)/(rTip − rHub)
s [J/(kgK)] specific entropy
t [s] time
tbp [s] blade passing period, 1/fbp
T [K] temperature
�v [m/s] velocity vector
v∞ [m/s] undisturbed velocity
v⊥ [m/s] velocity component perpendicular to �ω
v⇑ [m/s] velocity component parallel to �ω
vz [m/s] axial velocity component
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z [mm] axial direction parallel to machine axis
α̂ [1/s2] rotational acceleration
θ [deg] angular position
ρ [kg/m3] density
σ [m] coordinate along a vortex line
∆σ [m] coordinate increment along a vortex line
τ [N/m2] stress tensor
�ω [1/s] vorticity vector
ωθ [1/s] circumferential component of �ω
ω̂ [1/s] rotational speed
Y [−] non dimensional time, t/tbp

1. Introduction

One of the key issues in modern turbomachinery design is the improvement of com-
ponent efficiency. The aerodynamic efficiency of a turbine stage is drastically reduced
by secondary flows. Langston [1] estimates the contribution of the secondary loss to
be up to 50% of the total aerodynamic loss. Hence, secondary flow control plays a key
role in the strive for more efficient and environmentally friendly turbomachines. This
goal can only be reached through improved understanding of the secondary flow de-
velopment and interactions. There have been a number of investigations focusing on
the total pressure loss coefficients, secondary velocity [2] and - in more recent papers
- the vorticity distribution[3].

Pullan and Denton [4] presented a visualization method using a passive scalar tech-
nique which was found to greatly enhance the analysis of their numerical simulations
of vortex-blade interaction. The kinematic behaviour of a stator passage vortex within
the downstream rotor has been studied both with and without the influence of rotor
endwall flows.

A large body of research work has been devoted to secondary flows within tur-
bomachines. Sieverding [5] has summarized recent progress in the understanding of
basic aspects of secondary flows in turbine blade passages and Langston [1] recently
presented a comprehensive review of secondary flows in axial turbines.

Gregory-Smith et al. [6] showed a method of evaluating streamwise vorticity from
traverse data and obtaining a streamwise direction from a least-squares linear fit of
pitchwise averaged yaw and pitch angles. This method produces a reduced streamwise
vorticity that indicates the number of rotations that a lump of fluid with such a
vorticity would make as it travelled the distance between the blade rows.

Roth [7] examined existing extraction algorithms and analyzed their underlying
definitions of a vortex. He proposed an elementary operation on a pair of vector fields
to be used as a building block for defining and computing global line-type features of
vector or scalar fields.

The present work proposes a novel technique to analyze complex flow fields involv-
ing vortical structures. Considering the terms of the vorticity equation, such as the
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Measurement volume

Figure 1. Geometry overview. The box indicates the location of the
measurement volume

vortex stretching and the time derivative term, a deeper insight in flow physics is
gained.

1.1. Experimental setup. The data presented in this paper were taken form a two-
stage axial research turbine, which is described in detail in Sell et al. [8]. All mea-
surements were taken at the same operating point using a single sensor fast response
aerodynamic pressure probe (FRAP) [9,10]. The raw data is phase-lock averaged us-
ing an accurate rotor trigger and finally reduced to the requested time resolved flow
parameters such as the 3D, unsteady velocity vector, as well as the total and static
pressure.

The location of the measurement volume is indicated in Figure 1. The resolved
volume covers both the cavity and a part of the main flow region. The coordinate
system is defined as follows: C denotes the non-dimensional circumferential and R
the non-dimensional radial position. According to the definition, R = 1 represents
the tip radius. The z axis denotes the axial direction as indicated in Figure 1. A local
axial coordinate axis is introduced denoting the first measurement plane with z = 0.
The last of the 5 measurement planes is found at z = 7.5mm.

As an example, how secondary flow effects the cavity flow situation, the time
averaged total pressure distribution downstream the second nozzle guide vane (NGV2)
is depicted in Figure2. The data range covers both, main and cavity flow in radial
direction and 1.1 pitches in circumferential direction. The hub is located at R = 0
and the tip at R = 1, respectively. In order to visualize the periodicity of the flow,
the results are copied three times in circumferential direction. The view is from a
downstream position into the upstream direction. The flow region of low total pressure
behind the blade shows the typical wake-loss core structure in the main flow. Both
the passage vortices at the hub as well as at the tip can be clearly identified. These
loss cores are created by the passage vortices, which entrain all incoming boundary
layer fluid and move it to the suction side of the wake. The cavity flow regions at
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Figure 2. Total pressure distribution downstream of the second stator (NGV2)

hub and tip are characterized with significantly lower total pressure. The interface
between main and cavity flow both at hub and tip shows a wavy structure.

1.2. Data Postprocessing. The new flow visualization technique bases on the vor-
ticity transport equation Eq. (1.2). The resolution of the volume data set in both
space and time is high enough to evaluate derivatives using finite differences. For each
time step, the unsteady vorticity field is evaluated directly using the definition

ω = ∇× �v. (1.1)

Having both, the full three dimensional time resolved vorticity and velocity field, the
evaluation of the substantial derivative within the compressible unsteady vorticity
transport equation Eq. (2.1) [11] is straight forward using its definition Eq.(1.3).
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For visualization reasons, both terms on the right hand side of Eq. (1.3) were eval-
uated and discussed in [12] as they allow to flip between the Lagrangian and the
Eulerian point of view and describe the acceleration of the vortices. Besides the ac-
celeration term, the new flow visualization technique bases especially on the vortex
stretching term

1

ρ
�ω ·∇�v, (1.4)

which describes the vortex tilting and stretching. A discussion of this term and its
application to flow field visualization will be done in the next section.



Unsteady vorticity field in a driven axisymmetric cavity flow 5

From the application point of view, the baroclinic generation term
1

ρ3
∇ρ×∇p (1.5)

cannot be derived form measurements. The missing information is the unsteady
temperature distribution. Together with the static pressure distribution, the time
resolved density field could be evaluated. For the evaluation of the other terms in
Eq.(1.2), the lack of accurate density information has only a minor influence, since
the values of the temperature distribution are within a relatively narrow band.

Nevertheless, it is worthwhile to theoretically discuss the baroclinic vorticity gen-
eration term as it can be related to the entropy distribution. Taking the curl of

Tds = dh− 1
ρ
dp orT∇s = ∇h− 1

ρ
∇p (1.6)

using ∇×∇h ≡ 0, Eq. (1.6) can be written as
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Using Eq. (1.7) and the vector identity (Wilcox [13])
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the following relation can be derived:
1

ρ3
∇ρ×∇p = 1

ρ
∇T ×∇s. (1.9)

In addition to the ideal gas law, Eq. (1.9) represents three coupled differential
equations for the time resolved entropy. However, the time resolved temperature
measurement is missing for the presented data set.

2. Results

In this section, the toroidal vortex located at the inlet cavity of a turbine rotor
labyrinth seal - as discussed by Pfau et al. [14] - is under investigation applying
both standard as well as the new proposed visualization technique using the vortex
stretching term (1.4). The cavity vortex is driven by the main flow due to viscous
interaction. The behavior of this vortex is of interest, as it affects the leakage mass
flow over the shroud and redirects cooling air in cooled turbines.

2.1. Steady 3D flow visualization using total pressure. A useful property to
study loss generation is the steady total pressure. The corresponding distribution
downstream of the second stator is given in Figure 3. Five radial cuts and one axial
cut, which is located at z = 0, were used to intersect the measurement volume. In
addition, streamlines were added in order to visualize the flow.

From the total pressure distribution, the volume under investigation can be split
into two regions, one being the main flow region (R < 1) which is represented by
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Figure 3. Total pressure distribution behind a stator visualized using
radial slices. The black lines represent streamlines

high total pressure and the other being the cavity flow region (R > 1), which is
characterized by low total pressure. The motion of the main flow shows a large
circumferential component as expected downstream of swirl generating stator. The
location of low total pressure within the main flow represents the loss core as found
in Figure 2.

Within the cavity, the presence of the toroidal vortex aligned in circumferential
direction can be verified by observing the streamlines which show very small axial
motion and even back flow at the outer part. A qualitative description of the flow
situation within the cavity is depicted in Figure 4. The axial component of the velocity
vz(r) is constant in the main flow region and then decays while moving into the cavity.
At the centre of the ring vortex, the sign changes and finally the fluid comes to rest
due to the non-slip condition at the cavity wall.

2.2. Unsteady 3D flow visualization using static pressure and the circum-
ferential vorticity component. In this section, the unsteady flow structure in the
measurement volume is investigated. At first, the time resolved static pressure distri-
bution is given in Figure 5. The different plots are equidistant in time and represent
the flow during one blade passing period.

Vortices create a local minimum of static pressure in their centre of rotation. The
vortex gets stronger if the static pressure in the centre is decreased. The toroidal
vortex located in the cavity (R > 1) can be identified with this reflection in the plot
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Figure 4. Generic cavity flow structure in an (r, z) cut: expected
axial velocity and circumferential vorticity distribution

as a region of low static pressure. This zone of the flow is pointed out in the middle
radial cut of Figure 5 using a black circle. Looking at this region for a blade passing
period, it can be seen that the level of the static pressure doesn’t remain constant. It
shows a cyclic change where the pressure level within this middle radial cut reaches
its minimum between Y = 1/6 and Y = 2/6. The cyclic change is correlated to the
blade passing period.

Figure 6 shows the circumferential component of the vorticity vector ωθ. Consider-
ing the cavity flow model depicted in Figure 4, it can be stated that ωθ changes while
going radially outward through the cavity: As ωθ is proportional to the slope of the
axial velocity vz, it vanishes in the main flow region, where vz is about constant. In
the tip zone, vz decays and therefore ωθ gets positive and stays positive as long as the
slope of the axial velocity profile shows the same sign. At maximum negative axial
velocity, ωθ is zero. At this radial position, ωθ changes its sign and remains negative
until the cavity wall is reached. The presented idealized radial distribution of the
circumferential component of the vorticity vector can also be found in the unsteady
measurements presented in Figure 6, considering one of the radial cuts. ωθ vanishes
in the undisturbed main flow. Going radially outward, ωθ shows at first positive and
then negative values as discussed. Moreover, the transient behavior is as expected
from the previous reflections on the static pressure distribution. Looking again at the
middle radial cut, a maximum value is reached between Y = 1/6 and Y = 2/6.

A monitor point was selected at the middle radial slice within the core of the cavity
vortex as indicated in Figure 5 with the black dot. The behavior of p and ωθ at this
point during 3 blade passing periods is given in Figure 8 and allows a direct transient
comparison between p and ωθ. It is evident that ωθ increases by as much as 100% in
a negative pressure gradient zone and decreases gradually by as much in a positive
pressure gradient area. Clearly and as expected, the circumferential vorticity and the
gradient of the static pressure in the cavity are inversely related.
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Zone of low static pressure 
monitoring point 

Figure 5. Unsteady static pressure distribution downstream of the
second stator: One blade passing period

2.3. Unsteady 3D flow visualization using the circumferential component
of the vortex stretching term. In Figure 7, the circumferential component of
the vortex stretching term is depicted. Consider a vortex line in a velocity field as
indicated in Figure 9 According to the definition, vortex lines are tangential to the
local vorticity vector �ω. The local velocity vector �v can be split into a component
tangential v⇑ and a component normal v⊥ to the vortex line as it is described in [15].
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Figure 6. Unsteady circumferential vorticity component downstream
of the second stator: One blade passing period

Neglecting the density, term (1.4) can be written as
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where σ denotes the coordinate along the vortex line, n away from the center of
curvature and m along the third normal. Eq. (2.1) makes use of ←−ω ·�in =←−ω ·�im = 0
and �ω ·�iσ = |ω|. Considering the derivative of the first term in Eq. (2.1) to be
positive, which corresponds to the case that �v⇑(σ + ∆σ) > �v⇑(σ), the section of
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negative 

positive 

Figure 7. Unsteady component of the circumferential vortex stretch-
ing term downstream of the second stator: one blade passing period

the vortex tube under observation will be stretched and the rotational speed will
increase as the tube diameter decreases (see Figure 9). The opposite behavior is true
for �v⇑(σ + ∆σ) < �v⇑(σ). The second term on the right hand side of Eq. (2.1) is
responsible for the vortex tilting as can be seen by considering �v⊥(σ +∆σ) 6= �v⊥(σ).
Going back to Figure 7, one can see that the circumferential component of the vortex
stretching term undergoes a cyclic change as well. At Y = 0 the stretching term is
positive, whereas it is negative at Y = 3/6, looking again at the middle radial cut. As
mentioned before, a positive component in the direction of the vortex line represents
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Figure 8. Time series of static pressure and circumferential vorticity component

a stretching of the vortex and a negative one squeezes the vortex, if the vortex is
aligned with the stretching term vector. In case of the toroidal vortex, the vortex
is aligned in circumferential direction and the vortex stretching term will therefore
primarily stretch (rather than tilt) the vortex and thus increase the strength of the
circumferential vorticity component and decrease the static pressure in its core. The
opposite is true for the negative vortex stretching term, which is consistent with the
findings up to now. It has to be stated, that the vortex stretching term is ahead of
the vortex strength term. That means that the vortex stretching term reaches its
maximum before the vortex strength term does. Therefore, the spin up process of the
vortex needs some time, which is discussed in the following paragraph.

At Y = 3/6, the vortex stretching term in circumferential direction is negative and
thus squeezes the vortex. As it can be seen in Figure 5, the strength of the vortex will
decrease. The behaviour found in the experiment can be explained by considering
a solid body rotation. Let ω̂ denote the rotational speed of the vortex expressed
as a harmonic function according to ω̂ = ω̄ + ω0 sin(ωbpt) with ωbp = 2πfbp. The
rotational acceleration is then the time derivative of the rotational speed α̂ = ∂

∂t ω̂ =
ωbpω

0 cos(ωbpt) and is thus a quarter of a period ahead of the rotational speed. This is
exactly the behaviour found in the measurements: The acceleration term represented
by the circumferential component of the vortex stretching is a quarter of a period
ahead of the terms which represent the speed or the strength of the vortex (such as
the static pressure distribution and the circumferential component of the vorticity).

3. Conclusions

Nowadays, sophisticated probe technology and high computational power make it
possible to analyze complex flow in four dimensions, i.e. space and time. Considering
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Figure 9. Influence of the velocity field on the vorticity

the huge amount of data, intuitive visualization is the key for further processing and
analyzing data as well as to locate interesting features. It allows to gain insight in
physical mechanisms and promotes flow understanding.

The visualization of the vortex stretching term of the deterministic unsteady vor-
ticity transport equation has proven to be a powerful tool. It makes it possible to
locate complex features in the flow, such as the toroidal vortex and to associate dif-
ferent properties with each other. In the example under investigation, the stretching
and squeezing of the vortex line around the annulus could be connected with the
transient behavior of the static pressure and the circumferential component of the
vorticity vector distribution.

The baroclinic vorticity generation term was related to the gradient of the entropy.
For the evaluation of the entropy differences, the temperature distribution has to be
time resolved. Hence, the time resolved temperature measurement is a very important
research area for the future as it would allow to calculate entropy differences.
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