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20.1 Introduction
Engineering design is facing a transition from the classic one-off designs to a more
complete design pipeline that includes design space exploration and optimization
processes. This transition is led by the continuous endeavor for added value in prod-
ucts and processes and the strong objective-oriented policy for sustainable growth,
while the big advancements in algorithmic development, numerical modeling, and
computational resources are key enablers. A characteristic example of the merits of
such transition is provided on aircraft design, which constitutes the application field
of focus of the current work. Thus, examining the design process and related research
over the last years, optimization is identified in different stages of product or service
development aiming to gain substantial competitive advantages. In the field of aircraft
design, competitive advantages can potentially have the form of fuel savings, noise
reduction, an increase in passengers safety and comfort, and improved fleet manage-
ment and flight data harvesting. On top of the industry needs for more sophisticated
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products, policy in the form of directives and legislation of aircraft industry is pushed
to comply with future strategic goals for sustainable development, environment pro-
tection, and human safety.

Essentially optimization is an automated decision making process that incorpo-
rates couples search and decision making strategies to an engineering optimization
case. This case describes in detail the problem considered for optimization, and hence
roughly contains the design variables, parameters, and outputs of the underlying nu-
merical model and the objectives/constraints that need to be optimized. Therefore,
optimization is an objective-oriented design process, where the derived designs are
propagated and selected as “best” with respect to a number of well-defined objec-
tives. Thus, the definition of “best” design(s) in an optimization problem cannot stand
alone as the given solution to address every need, but it is rather complementary to
the objectives defined in the optimization problem.

In parallel, it progressively became well understood that the nature of engineering
models and their variables or parameters is rather uncertain than deterministic. The
impact of those input uncertainties is significant, and often optimal designs obtained
by deterministic optimization approaches deteriorate from the desired performance
point or even fail to satisfy critical constraints of the real engineering system. To
address this issue the design variables and parameters are now defined using a prob-
abilistic distribution function and a relative or absolute range in order to effectively
describe the uncertainty, while an uncertainty propagation technique quantifies their
effect on a quantity of interest, such as objectives or constraints. The described pro-
cess enables the probabilistic design optimization (PDO) to define new designs of
desired qualities, but also designs that retain those qualities under the presence of
the input variations. As expected the integration of uncertainty quantification to the
optimization process comes at a price. Furthermore, the propagation of those uncer-
tainties to the quantities of interest of the case considered for optimization dictates
the sampling of a new space on top of the exploration of the design space from the
optimizer, as mentioned before. Thus, it is understood that PDO intensifies the com-
putational cost issues that already exist in deterministic optimization cases (Bellman,
1961).

Until now, motivation, advantages, and shortcomings of the deterministic and
probabilistic optimization have been identified. Moreover, a great number of opti-
mization frameworks in both domains are developed and benchmarked against ar-
tificial optimization problems, where optimal designs are known (Li et al., 2013;
Quagliarella et al., 2019). Despite the fact that the same frameworks are used, inte-
gration to engineering design is not a trivial process. The necessary pipeline that facil-
itates the automated evaluation of the objectives and constraints is a challenging task,
particularly when various disciplines are combined, e.g., thermal power–electrical
coupled simulations (Sahoo et al., 2019).

Not different to the rest of the engineering fields, integration of a full PDO frame-
work to aircraft design cases presents the same difficulties. A wide range of numerical
models are available, varying from fast, low-fidelity models to time consuming, high-
fidelity approaches that capture large amounts of physics, such as computational fluid
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dynamics (CFD) methods. Moreover, the definition of the optimization problems can
strongly challenge the convergence of the optimization algorithm towards a global
optimal design when a large number of design variables and uncertainties are con-
sidered and/or design space is heavily constrained. Therefore, feasibility of PDO
applications to aircraft design is not satisfied, and great care has to be taken in or-
der to increase the overall computational efficiency. Minimizing the number of calls
of the expensive, original engineering model greatly contributes to the reduction of
the computational demands. The main enablers of this minimization are mathemat-
ical models (Forrester and Keane, 2009), often known as surrogate models, that can
mimic the response of the original expensive model for an initial limited training
database of designs. Apart from surrogate evaluation, the capability of an optimizer
to locate fast the global optimal design and the computational demands of the uncer-
tainty propagation technique are crucial to the computational efficiency of the overall
PDO framework. It is understood that merits in computational time can be obtained
from development in several research fields. The longstanding experience and con-
tinuous efforts so far have increased the technology readiness level of the various
techniques and led to several software solutions, such as DAKOTA (Adams et al.,
2015), UQLab (Marelli and Sudret, 2014), and OpenMDAO (Gray et al., 2019).

In the current chapter, an overview of the computational pipeline of a PDO frame-
work is first provided. Then, we focus our analysis on three aspects of the pipeline
that relate to the integration of PDO applications in aircraft design and strongly af-
fect their feasibility: problem definition, surrogate models, and global optimization
schemes. In the last section, the current state of the art of the PDO applications to air-
craft design are reviewed and discussed in relation with the aforementioned aspects
of the PDO computational pipeline.

20.2 Probabilistic design optimization framework
The integration of PDO to engineering cases requires the development and imple-
mentation of a well-defined pipeline that automates and iterates through multiple
searches and decision making. Fig. 20.1 illustrates an indicative implementation of
such pipelines.

It should be highlighted that the flowchart illustrates the pipeline executed in one
iteration of the PDO run. The total amount of iterations is directly related to the
computational budget. A block-by-block description of the pipeline is first delivered.

• Design space: Initial input and all candidate designs obtained by the optimizer
in each iteration are sampled here. The design space is based on the definition of
all design variables and their ranges. Finally, any possible constraints on the input
design variables segment the design space, and are thus described here.

• Uncertain space: For each design in design space, a set of new designs is defined
here, in order to quantify the impact of uncertainties in objectives and constraints.
The size of this set depends on the uncertainty propagation technique and the
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FIGURE 20.1

Computational pipeline of optimization in probabilistic domains. The pipeline describes one
iteration of the optimization process. The overall optimization run constitutes a maximum
number of iterations, defined by the computational budget.

dimensionality of the uncertain space. Finally, to perform this operation the prob-
ability distribution functions and ranges of all the uncertainties are employed.

• Computational model: The evaluation of the outputs of the engineering model is
performed for the whole number of designs defined in design and uncertain space.
The evaluation time is a key aspect that determines the overall computational bud-
get and affects several choices regarding the structure of the PDO framework. To
enable PDO for engineering models with relatively high evaluation time (a couple
of minutes can be enough), the surrogate model totally or partially substitutes the
original engineering model described above.

• Calculate statistics: The statistical measures of objectives and output constraints
as defined in the optimization problem are calculated. The uncertainty propagation
techniques sets the background methodology for this calculation.

• Objective space: The total set of objectives defined in the optimization problem
form the objective space. Thus, all the calculated objectives and any possible out-
put constraints are placed here.

• Optimizer: This block represents the selected optimization scheme. Two main op-
erations are performed. Firstly, the candidate solutions are assessed and selected
designs are propagated as the current optimal designs set. Moreover, the overall
current best design, or set of designs (Pareto front) in the case of multiple objec-
tives, is defined. Secondly, the search strategy is applied to current optimal designs
set as described before, in order to further search the design space and provide new
candidate solutions.

Please recall that the described actions are part of one iteration in the PDO frame-
work. The number of iterations performed is dependent on the overall computational
budget and the actual cost per iteration, i.e., how much original engineering model
evaluation, nd how much time per evaluation are needed.

It is understood that the PDO framework consists of several methodologies that
need to be effective and efficient to finally obtain a meaningful, optimal outcome in
a realistic time frame. Moreover, its application to an engineering model requires a
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meticulous definition of the optimization problem, since the number of design vari-
ables, uncertainties, objectives, and constraints and their proper definition has a great
impact on both the efficiency of the framework and the engineering impact of its
optimal outcome.

Assuming that the optimization problem is defined properly and a robust engi-
neering model is given, three methodologies of the PDO framework are important:
the uncertainty propagation technique, the surrogate modeling, and the optimization
scheme. Firstly, the propagation of the uncertainties is important for the accurate cal-
culation of the statistical measures on the models’ output, and the necessary amount
of designs that are required to perform that operation. Moreover, the scale-up of the
technique to a large number of uncertainties is of great importance for the integration
of the PDO framework to more realistic engineering cases. A great deal of research is
focused on developing such techniques (Abraham et al., 2017; Blatman and Sudret,
2011), aiming to accurately calculate the underlying partial differential equations of
objectives and constraints using the lowest possible number of designs. Secondly,
surrogate modeling can significantly extend the feasibility of PDO to more realistic,
complex engineering cases. To achieve that, though, a proper surrogate management
framework needs to be established in order to achieve good prediction accuracy and
maintain it for cases that incorporate a large number of design variables and pa-
rameters. Thirdly, the selection of the optimization scheme affects the effectiveness
of the search strategy and the quality of the decision making throughout the whole
design process. Moreover, the class of the selected optimization scheme and its spe-
cific type determine the exploration and exploitation trade-off, and hence the amount
of model evaluations needed until convergence to a local or global optimum solu-
tion.

In the current work we assume a robust engineering model and a state-of-the-art
uncertainty propagation technique, and we focus on the following.

• Problem definition: The traits and effects of a proper problem definition are dis-
cussed.

• Surrogate modeling: The positioning of a surrogate model in a PDO framework
and its managements is presented and thoroughly discussed.

• Optimization scheme: The selection of an optimization scheme is analyzed,
based on the various trends of exploration/exploitation trade-off of the current
state-of-the-art schemes.

20.2.1 Problem definition
Formulation of the deterministic optimization is the basis towards the proper defini-
tion of a PDO case. The conventional formulation of such a design problem uses a
simple statement to link the objective(s) to the design variables, imposing input and
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output constraints:

min
x

Jm = fm(x), m= 1,2, . . . ,M, (20.1)

subject to

ge(x)= 0, e= 1,2, . . . ,E, hi(x)≥ 0, i = 1,2, . . . , I,

where the objective Jm is evaluated based on the outputs of the engineering model fm
seeking the global optimum design vector x∗. The search for this optimal design is
subject to equality, ge, and inequality, hi , constraints that can affect the shape of the
objective and design space, as described in the previous section. At this stage, the
proper definition of design variables and its ranges and the selection of meaningful
objective(s) are essential to lay the basis where PDO will be built upon. Last but not
least, the proper definition of the constraints guarantees that the optimal outcome of
the designs reflect the limitations of the actual technology.

Since a solid deterministic basis is formed, a problem statement for the final PDO
case is needed. This additional layer constitutes the definition of the input uncertain-
ties and the statistical formulations of the objectives and output constraints. These
statistical measures quantify the effect of the uncertainties on the original objective
Jm, hence becoming the new objectives of the optimization problem in the proba-
bilistic domain. That said, the transformed new objectives need to address both the
performance of the model and its sensitivity with respect to the defined input un-
certainties. Two main approaches dominate the engineering design in probabilistic
domains: robustness and reliability.

The term robustness is used to express and quantify the variance of each deter-
ministic objective Jm, defined in Eq. (20.1), with respect to the input uncertainties.
In this approach, each deterministic objective is transformed to its expectation and
variance measures. Fig. 20.2 provides a visual example of this transformation, for a
simple single-objective optimization problem that has one uncertain design variable.

To express that in an optimization case form, assume that the objectives, Jm, in
Eq. (20.1) equal to one (m= 1, J1), and hence we deal with a single-objective prob-
lem. As explained in the typical approach of robustness-driven design, the transition
from deterministic to PDO doubles the number of objectives, since it is necessary to
account here for both the expectation and the variance measures of the objective. The
following equation describes the aforementioned rationale:

min
x

E[J1],V ar[J1], (20.2)

subject to

ge(x)= 0, e= 1,2, . . . ,E,

hi(x)≥ 0, i = 1,2, . . . , I,
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FIGURE 20.2

Transformation of a deterministic objective to an expectation measure and its variance
under the presence of input uncertainties. The original deterministic objective is
represented with the dashed line. As indicated, the new robust optimum is shifted to a
more flat area, where variance is minimized.

where E[J1] and V ar[J1] are the expectation and variance measures, respectively.
Thus, the resulting optimization problem is biobjective. First, it should be identified if
the relationship of the objectives is conflicting or not. For example, in Fig. 20.2 the re-
sulting objectives in the probabilistic space are not conflicting, and hence one solution
satisfies both. In the case of conflicting objectives, the extrapolation is straightfor-
ward, but note that higher-dimensional objective spaces provoke a few more issues
in the computational pipeline of the PDO. The principal issue is that the presence
of more than one conflicting objective changes the interpretation of “optimal” for
the candidate designs through the course of optimization. In that case, the compari-
son of two candidate designs is not limited to the better/worse bipole, but it is rather
described by the Pareto dominance relations (Deb et al., 2002). Thus, the optimal out-
come is not a single (local or global) best design that could be captured for a given
budget, but a set of designs in the form of an optimal Pareto front.

To avoid the increase in the number of the objectives and to utilize optimizers
designed for single-objective decision making, collapsing of the various objectives to
one weighted objective vector is followed. This collapsing is essentially the weighted
summation of all the objective values in the objective vector. Despite the effective-
ness of the method in reducing the size of the objective space, the optimal outcome
consists of a single design, and hence the rest of design contained in the Pareto front
is neglected. Repeated optimization runs with different assignment of weights in the
collapsed objective vector can provide more designs that correspond to the true Pareto
front. However, the accurate mapping between the weight values and the part of the
Pareto front captured is not yet achieved.

As described, robust design optimization is the proper process to identify designs
with good aspects and low variance at the same time. However, the operation of
many engineering systems is characterized by various constraints, some of which
prove critical. Therefore, reliability of the engineering systems under the presence of
uncertainties becomes a primary design concern, and hence a different formulation of
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the optimization problem needs to be constructed. Assuming again a single-objective
version (m = 1, J1) of the classic deterministic optimization case (Eq. (20.1)) the
reliability-based optimization problem is

min
x

E[J1] or min
x

E[J1] +wV ar[J1], (20.3)

subject to

P [ge(x)= 0] ≤ Po, e= 1,2, . . . ,E,

P [hi(x)≥ 0] ≤ Po, i = 1,2, . . . , I,

where E[J1] and V ar[J1] are the expectation and variance measures, respectively,
w is an assigned weight value, and P represents the failure probability of the re-
spective constraints, which has to be lower than a certain threshold noted as Po. The
main differentiating point is the use of the probability failure in the constraints of
the underlying model. In this way, a minimum level of reliability under uncertainties,
controlled by the Po threshold, is maintained throughout the PDO process. The ac-
curate calculation of the probability failure is a challenging task, since it requires the
evaluation of more designs. Thus, continuous development of efficient schemes for
the calculation of the probability of failure are detrimental for the feasibility for such
schemes.

20.2.2 Surrogate model
Time is the universal constraint applied in any aspect of life and finally life itself.
As expected, the available computational time is the main limitation in probabilistic
design and optimization as well. There are several components of the computational
pipeline (see Fig. 20.1) that control the overall budget requirements, such as the un-
certainty propagation method, the exploration/exploitation trade-off of the optimizer,
and the execution of the engineering model. The latter is critical to the feasibility
of the probabilistic design and optimization process, particularly in the engineering
field, where the calculation time per sample is relatively high or a high number of
design variables and parameters are usually considered.

To quantify this effect, an example from simple aerodynamics is used, where the
panel method (Drela, 1989) and Reynolds-averaged Navier–Stokes (RANS) equa-
tions are utilized to calculate lift and drag coefficients of an airfoil. The RANS
method, which incorporates a larger amount of physics, is more than 10 times slower
than the fast, but low-physics, panel method. Moreover, the absolute number regard-
ing calculation time is 10 mins for the RANS calculation (on 24 cores) and 0.5 mins
(single-core) for the panel method. Considering the absolute numbers, the RANS
method is not prohibitive and someone can assume that the probabilistic design and
optimization should be easily applied. However, if the evaluation of a full-factorial
design of experiment (DoE) (Garud et al., 2017) is considered, the difference in com-
putational time demands becomes significant as the number of design variables and
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FIGURE 20.3

An illustrative example of the curse of dimensionality in engineering design, where an
exponential increase in computational time is identified with respect to the number of
design variables.

parameters is considered. Fig. 20.3 quantifies this difference for various numbers of
design variables.

As can be seen, the increase in the number of variables, or search space in general,
causes an exponential increase in the computational time needed to perform a full-
factorial assessment of the model. This increase is not limited to the calculation of the
full-factorial DoE, but it extends to operations such as optimization in deterministic
and probabilistic domains, since searching strategies of the optimizers have to antic-
ipate same-size or larger design spaces. In the case of PDO, the computational time
demands are generally higher, due to the need of additional calculations to extract
the statistics for each candidate design considered. Fig. 20.3 shows that a lower com-
putational time per design delays the increase of the overall calculation time with
respect to the design variables, thus making feasible probabilistic optimization for
higher-dimensional design problems. Following the given example and considering
the low complexity of the example given, it is apparent that the number of evaluations
of the engineering model is crucial to the feasibility of the optimization process and
the quality of the optimal outcome.

To enable the use of PDO in engineering design and extend its feasibility to more
complex models or larger design spaces, approximations of the original engineer-
ing models are used. The aim of such approximation techniques, known as surrogate
models, is to make sufficiently accurate predictions using the lowest number of origi-
nal model evaluations possible. The significant computational advantages originating
from their use led to the development of different kinds of surrogate models, such as
kriging (Forrester and Keane, 2009) and its variants (Kleijnen, 2017), artificial neural
networks (Cheng et al., 2016), polynomial regression (Forrester and Keane, 2009),
and support vector regression (Smola and Schölkopf, 2004). The effectiveness and
efficiency of the overall optimization scheme are controlled by two factors: the type
of the surrogate models used and the structure of the scheme.
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The first factor is related to the capabilities of the various models to derive
quality predictions under certain conditions, e.g., linear or nonlinear original model
responses. Chatterjee et al. (2019) performed a comparative assessment of different
models indicating that anchored ANOVA, decomposition ANOVA, and polynomial
chaos expansions (PCEs) (Wiener, 1938; Xiu and Karniadakis, 2002) are promis-
ing surrogates of the original engineering model, particularly for complex nonlinear
responses.

The second factor is related to the structure of the overall optimization scheme,
as regards the function and the management of the surrogate models within. Draw-
ing experience from surrogate-based optimization schemes in deterministic domains,
the management of surrogates is mainly divided in two cases. The first and simplest
one is the a priori construction of the training database and the subsequent use of the
surrogate models as global approximators over the whole design space. This man-
agement scheme is simple to implement, although the complete substitution of the
original engineering model by the surrogate requires high prediction accuracy in the
whole design space to derive optimal design close to reality. That is indeed feasi-
ble to achieve in lower-dimensional design spaces, and thus a lot of initial studies on
surrogate-based optimization made use of this surrogate management structure. How-
ever, to obtain impactful designs, a high number of design variables and complex,
high-physics models are needed, hence making the creation of a global approxima-
tor surrogate model a difficult task, both in terms of prediction accuracy and time
demands. To tackle this rather strong limitation, adaptive formation of the training
database of the surrogate model is suggested in the seminal study of Jones et al.
(1998) and further developed in several studies (Shan and Wang, 2010). The basic
principle behind all the adaptive management methods is the progressive build-up of
the surrogate training database with designs that are of interest both for the course
of the optimization run and the improvement of the prediction accuracy (Liu et al.,
2018). That essentially translates to better prediction in design areas of interest.

While surrogate models as global approximators exist also in the probabilistic
optimization field, adaptive formulation of the training database is a key aspect here.
Moreover, the need to predict both the response of the original model and the be-
havior of its statistical measures adds a second level of prediction. To address this
issue, one iteration of probabilistic optimization is split to the optimization and un-
certainty loops, where different surrogate models are defined and used (Chaudhuri
et al., 2019). The term “different” refers mainly to the designs that constitute their
training databases and the type of data considered for prediction. Fig. 20.4 illustrates
optimization and uncertainty loops in a typical iteration of a probabilistic optimiza-
tion scheme (left) and the positioning of the surrogate models in such an iteration.

A common characteristic in some implementations of this multilevel surrogate
modeling for probabilistic optimization is the combination of the design and uncer-
tain space in one combined space (Arsenyev et al., 2015). This combined space allows
the formulation of a training database that can describe the response of the original
model with respect to all the parameters that induce a smaller (uncertainties) or larger
(design variables) change to the inputs. The formulation of this design database al-
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FIGURE 20.4

Positioning of an adaptive surrogate model in a sequential interaction of optimization and
uncertainty loops. The flowchart is based on the work of Chaudhuri et al. (2019).

lows then the creation of the first-level surrogate and its sampling in order to obtain
response data. The former, first-level surrogate is then coupled to the uncertainty
propagation technique that needs to sample the surrogate model on a local scale in
order to transform the input uncertainties to the statistical measure of preference.
Based on these data, which link the design variables to the selected statistical mea-
sure, a training database is formulated, and the second-level surrogate model is fitted.
The latter is then coupled to the search strategy of the optimizer, since it explicitly
links the design variables to the objective considered for optimization.

A closer examination of the overall structure of the aforementioned scheme high-
lights again the approach regarding the formulation and treatment of the surrogate
models. In particular, the training databases associated to the first-level surrogate
model greatly affect the prediction accuracy of the surrogates in both levels. That said,
one-off construction of that training database requires an a priori selection of designs
that are well spread in the whole combined space (Arsenyev et al., 2015). Moreover,
the size of the training database is increasing in order to guarantee a lower bound on
the prediction accuracy of the first level surrogate, e.g., (25 30) ·Nd . Following the de-
terministic optimization paradigm, such techniques are limited to lower-dimensional
spaces, and hence they are usually rendered insufficient for the particularly high-
dimensional problems of PDO. Therefore, adaptive formulation allows for a smaller,
initial training database, and the progressive definition of designs that are of interest
for both the optimizer and the surrogate model (Liu et al., 2018).

Finally, the use of surrogate models within the context of probabilistic optimiza-
tion raises the question of good prediction performance at both a local and global
scale of the design space. Two aspects of the aforementioned optimization schemes
are of interest here: combined space and adaptivity. Firstly, the combined space en-
ables the definition of a DoE that samples sufficiently well the variations at both local
and global scale. This advantage comes from the fact that the combined space has the
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shape of a hypercube, where some of its edges represent the range of the uncertainties
and the rest the range of the design variables. As expected, a large number of uncer-
tainties increase the hypervolume of the combined space, thus necessitating a large
initial training database to achieve satisfactory prediction accuracy. To alleviate that,
an initial sensitivity analysis on an uncertainty level is suggested. The analysis allows
the reduction of the size of the combined space by adding only the most influential
uncertainties.

Secondly, adaptive construction of the training database supports the good predic-
tions at both local and global scale as the optimization run progresses. The reason be-
hind that improvement is the gradual convergence of the optimization search strategy
towards a specific area of the design space. This convergence reduces the Euclidean
distance of the designs that are propagated to the training input database, thus allow-
ing the surrogate model to predict more accurately a limited area of the design space.
Despite the progressive improvement of the performance, the size of the initial train-
ing database and space filling properties of the designs have to be carefully defined to
avoid any deterioration in the overall prediction performance of the defined surrogate
models.

20.2.3 Optimization scheme
The effect of an optimization scheme is crucial to the quality of the optimal designs.
That effect is reflected mainly in the ability of the optimizer to explore the design
space and capture the optimal design, and the required budget to perform the afore-
mentioned tasks. Those two effects are represented as the exploration/exploitation
trade-off. In the current section, the exploration/exploitation trade-off is discussed
for different classes of optimizers with a focus on global, nature-inspired optimiza-
tion schemes. It should be highlighted that the goal is not to produce an explicit and
detailed analysis of the existent optimization schemes. We rather aim to examine the
overall developments in the optimization field with respect to their exploration/ex-
ploitation trade-off, hence projecting their potential to the PDO field.

The exploration/exploitation trade-off is considered as one of the key performance
indicators of every optimization scheme. The interpretation of this indicator relies
on the fact that every optimizer is essentially a decision maker, with an underlying
search strategy that produces a series of candidate designs. This underlying search-
ing strategy can be aggressive, thus producing designs that exploit the maximum
improvement of the objectives under a narrow range of options. In contrast, other
search strategies can be totally explorative, thus obtaining a variety of new candidate
designs, though without considering the improvement of objective values. Those two
aspects are conflicting in the search strategies that are developed so far, complying
with the common perception that someone cannot explore more options if aggressive
decision making is performed. Therefore, assuming that exploration and exploitation
are objectives that need to be maximized in the current and future developed opti-
mization schemes, their different combination should form a Pareto front. Fig. 20.5
demonstrates a qualitative interpretation of the exploration/exploitation trade-off in
the form of a Pareto front as described above.
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FIGURE 20.5

Qualitative Pareto front of exploration and exploitation as desired qualities of an optimization
scheme. In the upper left fully exploitative gradient-based schemes are located, while in the
lower right, extreme pure-design space exploration by space filling DoE is placed. Finally, all
the gradient-free, nature-inspired optimizers lie in the middle part of the Pareto.

A brief analysis of the current developments in the optimization field is provided
here, based on their location in the depicted Pareto. Starting from the upper left, the
highly exploitative gradient-based schemes (Nocedal and Wright, 2006) are located.
As the name states, gradient-based optimizers use gradient information to identify
local areas of the design space that maximize the improvement of the defined ob-
jectives. Different mathematical approaches are employed in order to determine the
search direction in each iteration (Nocedal and Wright, 2006) and calculate the gra-
dients (Martins et al., 2003; Mader and Martins, 2012), thus modifying the overall
search and computation efficiency. The main requirements for such optimization
schemes are a starting design and the gradient information, while configuration of
the algorithm is not an issue. Despite their significant computational efficiency and
their sought mathematical background, gradient-based optimizers are strictly local
search algorithms. Thus, their ability to locate the global optimum design is heavily
dependent on the starting design, when complex engineer model responses are con-
sidered. To intensify the exploration and scale it up to a more global level, multistart,
gradient-based optimization schemes have been developed (Chernukhin and Zingg,
2013). The definition of multiple new starting points allows the algorithm to perform
the highly exploitative local search in several parts of the design space. Aiming to
achieve the maximum of exploration of the design space, the multiple starting points
are usually part of a space filling DoE, such as Latin hypercube sampling (Garud et
al., 2017) or Sobol (Garud et al., 2017). This group of optimizers are located again
in the upper left part of the Pareto front (see Fig. 20.5) but not in the extreme edge as
the pure gradient-based optimizers.

Moving from the upper left to the middle and the lower right parts of the Pareto,
the exploitation skills are more balanced to the exploration capabilities of the op-
timization schemes. In this area, the gradient-free class of optimizers is located.
Gradient-free algorithms are a big family of stochastic optimizers that operate us-
ing only the value of the objectives to assess candidate designs and guide their search
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strategy. The simplicity and robustness of their search strategy allows them to per-
form under noncontinuous and complex responses of the original engineering model.
The inputs of the algorithm consist of a set of initial designs and the configuration
of their parameters. The latter is of great importance for the performance of the al-
gorithm, while the definitions of the configuration set is a nontrivial task, due to the
intrinsic randomness of their search strategies.

Several implementations of the gradient-free optimization paradigm exist in the
literature (Boussaïd et al., 2013) aiming to capitalize the good search capabilities,
while the development of this type of optimizers remains an animated topic of re-
search. The main differentiation point between those implementations is the core
research strategy often inspired by search patterns or processes that exist in na-
ture (Kennedy and Eberhart, 1995; Michalewicz, 1995; Storn and Price, 1997; Yang
and Deb, 2010; Yang, 2009). Among others, the original implementation of parti-
cle swarm optimization (PSO) (Kennedy and Eberhart, 1995) is a classic example
of combination of exploration and exploitation skills. The optimizer exploits the
food search mechanisms of birds in order to build an optimized search strategy. The
particles (generalizing the term from bird) represent the candidate designs that the
optimizer captures throughout the course of optimization. The critical part of this
search mechanism is the definition of the velocity for each particle,
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where Xt
i,d is the position of particle i in the design space during generation t and
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i,d and P t

g,d are the local and global best position for the dimension d , respectively.
Moreover, c1 and c2 are constants regulating two important terms in the updated
velocity formula: cognitive and social. These two terms represent the two different
mechanisms that a particle learns. The cognitive mechanism enables particle i to
adjust its velocity towards the best position encountered until now, while the social
mechanism allows the particle to drift its velocity towards the best solution captured
by the whole swarm of particles. Finally, rt1 and rt2 represent random numbers uni-
formly distributed in [0,1]. The randomization added to the search step enhances
the exploration of the design space, while it helps to avoid the entrapment in local
optima.

The numerous developments (Bonyadi and Michalewicz, 2017; Poli et al., 2007;
Harrison et al., 2018) based on this initial simple idea are a strong indication of the
capabilities of the PSO scheme, but also for the nature-inspired, global optimizers.
Evidently, a quick examination of the research outcomes in the optimization devel-
opment field demonstrates several new optimizers and variants of the most powerful
ones (Tilahun et al., 2019; Al-Dabbagh et al., 2018; Jayabarathi et al., 2018). De-
spite the large production of optimization schemes, a relatively small fraction is used
in expensive engineering design problems, due to their high computational demands
and the lack of integration of novel optimizers to complex, i.e., multilevel, surrogate
evaluation schemes. Using again the example of the Pareto front (see Fig. 20.5), ef-
forts needs to be made in order to build upon the current developments and push the
Pareto front to the direction where exploration and exploitation are both enhanced.
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To this end, gradient-free and gradient-based schemes are coupled to optimization
frameworks that aim to benefit from the advantages of both. The so-called hybridiza-
tion employs a gradient-based optimizer and a switching criterion related to the con-
vergence of the designs, in order to activate the gradient-based optimization scheme
and increase the convergence speed (Bos, 1998). Despite the simplicity of the idea, it
provided results that prove its benefits in real engineering problems (Chernukhin and
Zingg, 2013; Vicini and Quagliarella, 1999; Bos, 1998). The merits of such optimiza-
tion frameworks can be further extended by capitalizing the recent advancements in
both optimization algorithmic development and surrogate modeling, aiming to create
an optimization scheme with enhanced exploration/exploitation trade-off and max-
imized computational efficiency for PDO of expensive engineering cases, such as
aircraft design.

20.3 Probabilistic optimization in aircraft design
In this section the advancements in aircraft design are examined from the PDO stand-
point. Moreover, the different aspects of the computational pipeline as discussed
above are linked to the different aspects or levels of aircraft design.

An aircraft as a finalized product is overly complicated, containing a very high
number of components and several systems in place. Therefore, on a research level
several engineering design frameworks are used to investigate single components,
systems, and sets of systems at the aircraft level. To further analyze the overall
research outcome, Fig. 20.6 illustrates the different levels of aircraft analysis and
design.

Starting from the top, the aircraft level investigates the behavior and dynamics
of the whole aircraft assuming that the output of the defined model encounters a
number of phenomena originating from the different systems and components. The
intractable complexity of the process necessitates the use of several assumptions in
order to build the engineering model under consideration. The assumption making
is essential to the reliability of the model and the engineering impact of the results.
As expected, the fidelity of the computational approaches followed is low, due to
limitations in the development of such large-scale engineering models and the com-
putational resources.

The aircraft design as a whole, consists of several systems responsible for dif-
ferent functions, such as propulsion, electrical, landing, airframe, and more. The
reduction in underlying complexity allows for an increase in the fidelity of the com-
putational approaches. Despite the reduced levels, simplification through assump-
tions and lower-physics modeling is still necessary to render feasible studies of this
scale. Finally, aiming to achieve more complete and thoroughly investigated designs,
coupling of the various systems is becoming more and more necessary. Therefore,
integrated systems design is proposed as one of the suitable approaches to increase
the engineering impact of the designs produced.
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FIGURE 20.6

Segmentation of aircraft design: aircraft level, system level, and component level. As
moving towards the integration of all components and systems in one entity, underlying
models are simplified, i.e., levels of fidelity are decreasing.

Moving to the bottom of the design pyramid (see Fig. 20.6), components such
as compressors, turbines, combustors, landing gear, electrical wiring, and many more
are the basis of the whole design approach in aircraft vehicles. The relatively minimal
complexity allows for the use of detailed designs and high-fidelity models such as
CFD (Skinner and Zare-Behtash, 2018) approaches. Despite the increased level of
details encountered in the design process, interactions with other components are
largely neglected.

20.3.1 Applications on aircraft and system level
As described in the introduction section, engineering design in general is transi-
tioning from a solely one-off design approach to a complete pipeline process that
contains design space exploration, uncertainty quantification, and optimization in de-
terministic and probabilistic domains. In the current section, we examine the current
status and outcomes of this design phase transformation regarding the first two top-
level approaches in aircraft design, namely, the aircraft and the system level. Those
approaches are treated together due to some similarities of the underlying models
considered for optimization and the definition of the problem.

One-off design and assessment processes are the basis of aircraft development,
since a nominal complete design is necessary to be obtained at least in the early de-
sign stage. Evidently, a lot of research studies are dedicated to the development of
new design ideas (Drela, 2011a; Hall and Crichton, 2005) aiming to provide a com-
plete view of a new candidate design. Building on this, new numerical schemes for
design evaluation and optimization, and evolution of the computational framework
are the enablers of research studies on the exploration and optimization of the initial
one-off designs.
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Aiming to demonstrate the described transformation, the example of the D8 trans-
port aircraft configuration (Drela, 2011a) is discussed. The development of the D8
aircraft is supported within the N+3 initiative of NASA, aiming to shape future air-
craft vehicles with significantly reduced fuel consumption. The initial development
of the D8 aircraft is followed by further design examination, such as by Yutko et
al. (2017), where boundary layer ingestion is introduced and the initial structure of
the airframe is refined. Further than the one-off designs, Drela (2011b) demonstrated
that deterministic optimization can produce more optimized variants of the initial air-
craft, considering a number of different systems and assessing the various designs
on a mission level analysis. A critical factor of the successful optimization run is the
development of a set of models, namely, the Transport Aircraft System OPTimiza-
tion (TASOPT) (Drela, 2010), which can assess different aircraft designs at feasible
computational budgets. Finally, based on the strong basis of the available initial de-
signs and efficient engineering models, probabilistic optimization of the D8 aircraft
was performed by Ng and Willcox (2016). Considering the significant increase in
computational costs, due to the need of a statistical estimator for every candidate de-
sign, an information reuse method is developed and coupled with the classic Monte
Carlo (MC) method, achieving reductions of 90% compared with the original MC.
As regards the optimal design outcome, a new aircraft configuration is captured that
achieves 84% of predefined performance criteria, compared with an initial 22%.

Keeping aside the example of the complete design pipeline of the D8 aircraft,
more probabilistic optimization studies on an aircraft design level are identified.
Jaeger et al. (2013) introduced uncertainties in a short-range aircraft conceptual de-
sign optimization problem. Similar to the design of the D8 example, the availability of
simple models for the aircraft design is one of the main enablers of this study (Birman
and Druot, 2011). The modeling framework facilitates a range of models regarding
the environmental impact, fuselage, wings and tail, propulsion system, and landing
gear able to provide assessments of conceptual designs at the aircraft level. The per-
formed optimization obtained robust aircraft designs that exhibit a 90%–95% chance
of achieving the specified geometry and performance constraints. In a further attempt
to integrate PDO to the conceptual design stage, Clark et al. (2019) used surrogate
models as simplified, low-fidelity models to derive robust configurations of a generic
fighter aircraft under mission uncertainties. The idea of using surrogate models in that
design stage is particularly supported by a nondeterministic implementation of krig-
ing (Bae et al., 2019), providing a reliable approximation tool for future use within
such optimization frameworks. In all studies considered, the set of engineering mod-
els for the calculation of the quantities of interest are simplified, hence inducing some
epistemic uncertainties. To assess the impact of those uncertainties, Molina-Cristóbal
et al. (2014) introduced a novel epistemic uncertainty propagation technique coupled
to a black-box modeling approach. The work targets the gas turbine system and its
interactions with the airframe, thus focusing more one the integrated system design
than the whole aircraft. Robust engine configurations that reduce the effect of the
epistemic model uncertainties are obtained.
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In previous sections, three aspects of the PDO pipeline were discussed: problem
definition, evaluation of the engineering model, and optimization schemes. In the last
part of this section a status of the applications as described above in relation to those
three aspects is provided.

Firstly, probabilistic optimization coupled to the aircraft- and system-level de-
sign strongly relates to the problem definition. Despite the fact that the objective
in such studies usually refers to some weight indicator on a mission level, i.e.,
maximum take-off weight, problem definition needs careful treatment regarding the
constraint definitions. The latter are rather important due to the fact that constraints
in the conceptual design phase represent critical technology limitations. Therefore,
the complete definition of the probabilistic optimization problem significantly affects
the engineering impact and feasibility of the underlying study.

Secondly, the evaluation of the engineering model is a relatively trivial task, since
fast, simplified models are used at this level of design. Thus, the use of surrogate
models, as global or adaptive approximators, valuable as it is considered, does not
critically alter the feasibility boundaries of such applications.

Thirdly, the selection of the optimization scheme is slightly biased towards the
gradient-based schemes. This preference stems from the strong mathematical back-
ground of those schemes, associated to their efficient handling of heavily constrained
design spaces. Moreover, the relatively low evaluation cost of the engineering model
enables the calculation of the necessary gradient information even with more com-
putational time consuming techniques. This bias though does not exclude the use
of derivative-free schemes. Particularly gradient-free optimizers designed for con-
strained spaces, such as COBYLA (Powell, 1994), come also into play when large
search spaces (design or combined) with possible complex responses are formed. The
low evaluation cost of the original engineering model again can support the increased
computational demands of such optimization schemes. As expected, the availability
of relatively fast engineering models simplifies the computational pipeline and allows
for some flexibility in the choices of the optimization scheme. However, careful se-
lection is necessary, since even low absolute evaluation time, e.g., several minutes,
can result in computationally intractable optimization runs (see Fig. 20.3).

20.3.2 Applications at the component level
The literature analysis on the design optimization approaches applied to the aircraft
and system levels indicates that PDO is gradually becoming part of the design, even in
early stages. To complete the literature analysis, the status of the probabilistic design
and optimization methods applied to the design of components and subcomponents
of aircraft vehicles is examined.

Fundamental differences of component design with respect to aircraft and system
design are identified in the response type and level of fidelity of the underlying en-
gineering model and in the problem definition. The latter, in the case of component
design, incorporates design specifications, variables, and parameters from a single
technology domain, thus neglecting possible interactions. This does not mean of
course that such optimization problems are simple to solve.
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A vast number of research studies are available in the literature regarding the
standalone design and deterministic optimization of aircraft components and sub-
components. The popularity of the subject stems from the large number of different
components and subcomponents and the availability of different fidelity levels in the
numerical approaches. Those two characteristics significantly increase the potential
number of cases considered for design optimization, while they allow for a large vari-
ance in the complexity of the final case. Among others, airframe components such as
wings and airfoils and gas turbine components such as turbine blades and compres-
sors are thoroughly investigated and well documented (Skinner and Zare-Behtash,
2018; Du et al., 2017; Amrit et al., 2017; Chen and Agarwal, 2014). Due to this rich
basis of design cases, penetration of deterministic optimization increases along with
the advancements in different aspects of optimization pipeline, such as optimizers
and surrogate modeling.

Based on the background described above, the animated research around uncer-
tainty quantification and the development of more efficient uncertainty propagation
techniques enables the realization of optimization in probabilistic domains. One of
the first emerging and most popular applications is the PDO of an airfoil (Choi
and Kwon, 2014; Wu et al., 2018; Rumpfkeil, 2012). The relatively low complex-
ity of the overall optimization case and the continuous development of the lower-
and higher-fidelity numerical approaches linked to the evaluation of the objectives
allowed the fruitful production of research outcomes. Despite the generally lower
evaluation times per design, the use of surrogate models is still necessary in order
to increase the size of the combined space, thus creating a more comprehensive and
detailed optimal design. Several studies employ a multilevel prediction scheme, as
described in Section 20.2.2. As discussed, adaptivity and the definition of multiple
levels in prediction improve the performance of the prediction scheme at a global
and local scale. On that issue, Rumpfkeil et al. (2017) introduced a different tech-
nique, where clustering of the available training data is followed by the definition of
multiple local surrogates. The different approximations made at the local level are
probabilistically combined in an agglomerated final estimation. By extending these
features to a multifidelity approach, good prediction accuracy is achieved for a lim-
ited size of the initial training database. Finally, the extensive study of this specific
design problem led to the definition of benchmarks that use a specific airfoil geom-
etry (Quagliarella et al., 2019), aiming to assess in a systematic and effective way
novel PDO frameworks. Therefore, it is understood that the maturity level of meth-
ods related to uncertainty quantification is increasing.

In the current study, airfoils are considered as a partial design problem (sort of a
subcomponent) of other components in the engine and the airframe systems. Due to
the same reasons as the airfoil design problem, the wing, a component of the airframe
system, is particularly well studied. Extending to PDO, wing-related applications are
delivered (Liang et al., 2011), proving the readiness level of such design optimization
problems as well. Due to this maturity, extensions of the former design problem to
a multidisciplinary setting are identified. Jacome and Elham (2017) further optimize
the wing geometry of a popular civil aircraft, using coupled aerodynamics-structural
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computation over a surrogate-assisted mission analysis. The successful optimization
of the wing shape for given deterministic and probabilistic formulations of the objec-
tives is performed in a cost-effective manner, while past flight data are used to define
realistic uncertainty ranges. The latter is of great importance since a realistic problem
definition significantly increases the engineering impact of the studies. In the same
manner, but in a different component setting, Kamenik et al. (2018) use laser scans to
model the manufacturing uncertainties of a high-pressure turbine blade. The defined
uncertainties then serve as inputs in a probabilistic optimization scheme, aiming to
derive robust shape designs. Despite the importance of realistic uncertainty ranges
(see Section 20.2.1), a handful of research works combines the efforts of quantifying
them with the optimization process.

Comparing to the application of probabilistic optimization at the aircraft and
system levels, component-level design illustrates a significantly higher number of
applications due to the higher number of possible cases, and their varying complex-
ity. Following the same procedure as in the previous section, the application at the
component level is discussed in relation with the three aspects of the computational
pipeline of the probabilistic optimization, highlighted in the previous section: prob-
lem definition, evaluation of the engineering model, and optimization schemes.

Problem definition is a critical part in every optimization problem, both in de-
terministic and probabilistic domains. Different from the aircraft and system levels,
the objectives here significantly vary, due to the focus on specific and not similar
components. From the constraints standpoint, a varying level of complexity is also
identified. In reality engineering search spaces (design and combined) are usually
constrained, thus necessitating a more complex problem definition, if maximization
of engineering impact is desired.

In a reverse trend, the engineering model is evaluated, through surrogate models
are critical to the feasibility in most of the studies. This strong dependence stems
from the generally increased amount of physics captured, pursuing an in-depth in-
vestigation of the isolated component. Kriging and its variants (Kleijnen, 2017) are
key enablers of surrogate evaluation, while the research focuses on the construction
of adaptive, multilevel surrogate prediction frameworks that can address the need of
high prediction accuracy at both local and global levels.

Finally, a relatively strong bias towards the local gradient-based algorithms is
identified. The main reason behind that choice is the generally increased computa-
tional demands for the evaluation of one design, e.g., turbine blade design cases.
Therefore, the increased available budget per design limits the number of original
model evaluations. Therefore, local, gradient-based optimizers are selected to further
evolve the components considered for optimization. Moreover, adjoint formulations
in shape optimization problems cheaply provide gradient information even in high-
dimensional search spaces. To combine the necessary strong exploitation skills with
more exploration, thus more alternate and possibly impactful designs, the use of hy-
brid scheme is suggested.
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20.4 Conclusions
PDO applications in engineering, and particularly in aircraft design, are the results
of an ongoing transition from one-off design processes to more complete design
frameworks in the probabilistic domains. Longstanding research efforts focusing on a
wide range of numerical techniques and algorithms support the development of such
frameworks and their applications mainly through the maximization of the computa-
tional efficiency.

In this continuous pursuit of computational efficiency, two critical aspects of the
PDO pipeline were identified and examined: the surrogate modeling and the selec-
tion of the optimization scheme. As regards the first one, global approximation using
a priori training databases cannot be of use in the current status of engineering design
problems, due to the higher-dimensional search spaces of the probabilistic optimiza-
tion, i.e., for the same accuracy training databases of increasing size are needed.
Moreover, PDO raised the additional demand of prediction accuracy at both global
and local levels. A dominant solution captured was the multilevel, adaptive surrogate
evaluation, creating effective prediction schemes at significantly reduced costs. How-
ever, the good performance of the surrogate at both local and global levels at the first
iterations of the PDO process needs to be more investigated.

The maximization of the overall computational efficiency is strongly supported by
an optimization scheme with strong exploration and exploitation skills. To establish a
wide assessment, gradient-based and gradient-free optimizers were discussed within
the context of the exploration/exploitation trade-off. The ongoing debate between the
gradient-based and gradient-free algorithms, as the right way-to-go in engineering
optimization, will be answered by optimization schemes that effectively combine the
global exploration of the gradient-free algorithms and the local exploitation of the
gradient-based schemes. To this end, building from the source optimization frame-
works can facilitate good global exploration skills from nature-inspired algorithms
and exploitation from the gradient-based ones.

Finally, the aircraft design field was examined with respect to the status of the
PDO applications. Many interesting methods were identified, in relation to the sur-
rogate evaluation and optimization scheme. However, one main characteristic was
highlighted as a strong skill: knowledge of the PDO problem. The knowledge of the
problem considered for optimization, which directly reflects the quality of the prob-
lem definition, has great impact on the derivation of meaningful results. Therefore,
more studies that can define the ranges and types of uncertainties are encouraged,
aiming to obtain a general picture regarding the fidelity of the technologies involved.
Moreover, the continuous efforts to understand the aspects of different problems will
enable safe generalizations and classifications, allowing the development of opti-
mization frameworks operating on a more case-dependent basis.
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